Incipient Fault Diagnosis of Rolling Bearings Based on Impulse-Step Impact Dictionary and Re-Weighted Minimizing Nonconvex Penalty Lq Regular Technique

نویسندگان

  • Qing Li
  • Steven Y. Liang
چکیده

The periodical transient impulses caused by localized faults are sensitive and important characteristic information for rotating machinery fault diagnosis. However, it is very difficult to accurately extract transient impulses at the incipient fault stage because the fault impulse features are rather weak and always corrupted by heavy background noise. In this paper, a new transient impulse extraction methodology is proposed based on impulse-step dictionary and re-weighted minimizing nonconvex penalty Lq regular (R-WMNPLq, q = 0.5) for the incipient fault diagnosis of rolling bearings. Prior to the sparse representation, the original vibration signal is preprocessed by the variational mode decomposition (VMD) technique. Due to the physical mechanism of periodic double impacts, including step-like and impulse-like impacts, an impulse-step impact dictionary atom could be designed to match the natural waveform structure of vibration signals. On the other hand, the traditional sparse reconstruction approaches such as orthogonal matching pursuit (OMP), L1-norm regularization treat all vibration signal values equally and thus ignore the fact that the vibration peak value may have more useful information about periodical transient impulses and should be preserved at a larger weight value. Therefore, penalty and smoothing parameters are introduced on the reconstructed model to guarantee the reasonable distribution consistence of peak vibration values. Lastly, the proposed technique is applied to accelerated lifetime testing of rolling bearings, where it achieves a more noticeable and higher diagnostic accuracy compared with OMP, L1-norm regularization and traditional spectral Kurtogram (SK) method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

Incipient Fault Feature Extraction of Rolling Bearings Using Autocorrelation Function Impulse Harmonic to Noise Ratio Index Based SVD and Teager Energy Operator

The periodic impulse feature is the most typical fault signature of the vibration signal from fault rolling element bearings (REBs). However, it is easily contaminated by noise and interference harmonics. In order to extract the incipient impulse feature from the fault vibration signal, this paper presented an autocorrelation function periodic impulse harmonic to noise ratio (ACFHNR) index base...

متن کامل

A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain

The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...

متن کامل

Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions

Varying speed conditions bring a huge challenge to incipient fault detection of rolling element bearings because both the change of speed and faults could lead to the amplitude fluctuation of vibration signals. Effective detection methods need to be developed to eliminate the influence of speed variation. This paper proposes an incipient fault detection method for bearings under varying speed c...

متن کامل

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017